Axotomy-induced alterations in the synthesis and transport of neurofilaments and microtubules in dorsal root ganglion cells.
نویسندگان
چکیده
Changes in the synthesis and axonal transport of neurofilament (NF) proteins and tubulin were examined after various selective axotomies of adult rat DRG cells. For axonal transport studies, DRGs were labeled by microinjection of 35S-methionine 14 d after axonal injuries, and nerves were retrieved 7 or 14 d after labeling. Slowly transported proteins were examined by quantitative PAGE/fluorography. After distal peripheral nerve crush (50-55 mm from the DRG), the cytoskeleton that entered undamaged regions of peripheral branch DRG axons by slow axonal transport differed from normal, while the cytoskeleton that entered dorsal root axons did not. Specifically, smaller-than-normal ratios of labeled NF protein/tubulin were transported in peripheral DRG axons after distal peripheral nerve crush. This change was almost entirely due to a selective decrease in the output of labeled NF proteins rather than to an increase in the amount of tubulin transported with NF proteins. Since the efficiency of axonal regeneration is known to be lower after cut injury than after nerve crush, we compared the effect of cut versus crush axotomy of peripheral DRG axons on cytoskeletal protein output. A more substantial reduction in the labeled NF/tubulin transport resulted in peripheral DRG axons if the distal sciatic nerve was cut rather than crushed but, even under these axotomy conditions, the labeled NF/tubulin ratios in dorsal root axons were not reduced. Peripheral cut axotomy did result in a lag in the advance of the labeling peak of the NF/microtubule protein wave in dorsal root axons, suggesting either that these proteins were delayed in exiting the cell body or that a slowing of the rate of their transport occurred. Pulse-labeling DRGs in vitro using 35S-methionine, and analysis of labeled proteins by 2-dimensional PAGE-fluorography demonstrated that the incorporation of radioactivity into NF proteins was significantly reduced, while the labeling of tubulins was unchanged 14 d after distal peripheral axotomy. In contrast to the results of peripheral axotomy, dorsal root crushes made close to the DRG (2-3 mm) or considerably distal (at the CNS entry zone 28-30 mm from the DRG) did not produce detectable changes in the amount of labeled NF or tubulin transport in central or peripheral branch axons. These findings indicate that the down-regulation of NF production/output that is exhibited at 14 d after peripheral branch axotomy is not present after central branch injury.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملChanges in cytoskeletal gene expression affect the composition of regenerating axonal sprouts elaborated by dorsal root ganglion neurons in vivo.
The effect of a change in neurofilament (NF) and tubulin gene expression on the elongation of axonal sprouts by adult rat sensory neurons was examined. Distal sciatic nerve crush axotomy was used to initiate changes in cytoskeletal gene expression in lumbar dorsal root ganglion (DRG) neurons. In situ hybridization of DRG neurons with 35S-labeled cDNA probes revealed a significant reduction in t...
متن کاملThe Effect of Swimming Training on Ganglionic Cells Population and Class III Beta-Tubulin Protein in Dorsal Root Ganglion of Wistar Male Rats: An Experimental Study
Background and Objectives: β-tubulin protein is the protein that has a key role in plasticity and neurogenesis in the mature neurons. On the other hand, endurance training is effective in neuron life and lifespan. The present study aimed to investigate the effect of 20 days swimming training on class III β-tubulin and the number of ganglion cells in DRG of Wistar male rats. Materials and Me...
متن کاملAxo-glial interactions at the dorsal root transitional zone regulate neurofilament protein synthesis in axotomized sensory neurons.
After dorsal root crush, dramatic ultrastructural differences are observed between regenerated dorsal root axonal endings that are physically blocked at a ligation neuroma and those that are allowed to form axo-glial endings among the astrocytes at the dorsal root transitional zone (DRTZ). Physically blocked axonal endings swell immensely with membranous organelles and neurofilaments (NFs) whil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 8 5 شماره
صفحات -
تاریخ انتشار 1988